1. Which expression is equivalent to \(t^2 - 36 \)?
 A. \((t - 6)(t + 6) \)
 B. \((t + 6)(t - 6) \)
 C. \((t - 12)(t + 3) \)
 D. \((t - 12)(t - 3) \)

2. The floor of a rectangular cage has a length 4 feet greater than its width, \(w \). James will increase both dimensions of the floor by 2 feet. Which equation represents the new area, \(N \), of the floor of the cage?
 A. \(N = w^2 + 4w \)
 B. \(N = w^2 + 6w \)
 C. \(N = w^2 + 6w + 8 \)
 D. \(N = w^2 + 8w + 12 \)

3. A rectangular garden measured 4 feet wide and 6 feet long. Each dimension is increased by \(x \) feet. Which equation represents the new area, \(A \), of the garden?
 A. \(A = 2x + 10 \)
 B. \(A = x^2 + 10 \)
 C. \(A = x^2 + 24 \)
 D. \(A = x^2 + 10x + 24 \)

4. The area is found using the formula \(A = lw \), where \(A \) is the area, \(l \) is the length, and \(w \) is the width. The rectangle below has an area of 63 square feet.
 \[l = x + 5 \]
 \[w = x + 3 \]

 What is the width of the rectangle to the nearest foot?

5. What is the sum of the zeros of the function \(f(x) = x^2 - 6x + 8 \)?

6. While standing on a cliff 24 feet above the lake, Serena threw a rock with an initial velocity of 20 feet per second. The equation \(h = -16t^2 + 20t + 24 \) gives the height \(h \) of the rock after \(t \) seconds. How many seconds does it take for the rock to hit the water? (no calculator)

7. The function \(f(t) = -5t^2 + 20t + 60 \) models the approximate height of an object \(t \) seconds after it is launched. How many seconds does it take the object to hit the ground? (no calculator)

8. A rock is thrown up from the ground at an initial velocity of 84 feet per second. The formula \(h = -16t^2 + 84t \) gives the rock's height in feet after \(t \) seconds. What is the maximum height of the rock?
 A. 68 feet
 B. 84 feet
 C. 110 feet
 D. 179 feet

9. A baseball is thrown upward from the top of a building. The height of the ball \(t \) seconds after it was thrown into the air is modeled by the function \(h(t) = -16t^2 + 50t + 75 \). How many seconds does it take for the ball to hit the ground?
 A. 1.5 seconds
 B. 3 seconds
 C. 4.2 seconds
 D. 6.3 seconds
10. Which is the graph of the function \(f(x) = 4x^2 - 8x + 7 \)?